Total No. of Questions: 4]	

SEAT No.	:	

PC-383

[Total No. of Pages : 2

[6359]-503

S.E. (Civil Engineering) (Insem.) FLUID MECHANICS

(2019 Pattern) (Semester - III) (201003)

Time: 1 Hour] [Max. Marks: 30

- Instructions to the candidates:

 1) Answer Q.1 or Q.2, Q.3 or Q.4.
 - 2) Answer to the all questions should be written in single answer-book.
 - 3) Neat diagrams must be drawn wherever necessary.
 - 4) Figures to the right indicate full marks.
 - 5) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator (non programmable) and steam tables is allowed.
 - 6) Assume suitable data, if necessary.
- Q1) a) Define i) Specific Gravity ii) Specific Volume iii) Vapor pressure iv) Mass Density v) Capillarity vi) Viscosity vii) Surface Tension viii) Specific Weight.
 [8]
 - b) Derive the expression with usual notations for the total pressure and centre of pressure on inclined plane surface. [7]

OR.

- Q2) a) Calculate the specific weight, specific mass, specific volume and specific gravity of a liquid having a volume of 6 m³ and weight 45 kN.
 - b) Differentiate between Real Fluid and Ideal Fluid.

 \sim [2]

- c) A 3.6 m by 1.5 m wide rectangular gate BC is vertical and is hinged at point 0.15 m below the centre of gravity of the gate. The total depth of water is 6.1 m What horizontal force must be applied at the bottom of the gate to the keep the gate closed? [8]
- Q3) a) The water is flowing through a tapering pipe having diameters 300 mm and 150 mm at section 1 and 2 respectively. The discharge through the pipe is 42 lit/s. The section 1 is 10 m above datum, and section 2 is 6 m above datum. Find the pressure at section 2 if that at section 1 is 401 kN/m². [7]
 - b) Derive the continuity equation for three-dimensional flow with usual notations. [8]

OR

P.T.O.

ats at the points ($\nabla \nabla \nabla \nabla$ For a two-dimensional flow $\phi = 3xy$ and $\phi = \frac{3}{2}(y^2 - x^2)$. Determine the velocity components at the points (1, 3) and (3, 3). Also, find the discharge passing through the points given above. [7]